澳门金沙网上娱乐

您好,欢迎来到澳门金沙网上娱乐科技!
公告: 坚持客户视角观:即“站在客户的角度审视我们的工作,以集体的智慧和力量满足和超过客户的期望”。

当前位置:澳门金沙网上娱乐 > 服务中心 >
库、教程、论文实现这是一份超全的PyTorch资源列
发布时间:2019-07-08 18:07   作者:澳门金沙网上娱乐   点击:

  原标题:库、教程、论文实现,这是一份超全的PyTorch资源列表(Github 2.2K星)

  机器之心发现了一份极棒的 PyTorch 资源列表,该列表包含了与 PyTorch 相关的众多库、教程与示例、论文实现以及其他资源。在本文中,机器之心对各部分资源进行了介绍,感兴趣的同学可收藏、查用。

  该部分项目涉及语音识别、多说话人语音处理、机器翻译、共指消解、情感分类、词嵌入/表征、语音生成、文本语音转换、视觉问答等任务,其中有一些是具体论文的 PyTorch 复现,此外还包括一些任务更广泛的库、工具集、框架。

  这些项目有很多是官方的实现,其中 FAIR 居多,一般会有系统的使用说明,包含安装、加载、训练、测试、演示等多方面的详细解释。例如哈佛大学的 OpenNMT 项目,它是非常流行的神经机器翻译工具包。从导入自定义数据集、加载词嵌入向量到完成神经机器翻译模型的训练,OpenNMT 能支持整个流程,并且官方也一直在更新。

  20.pyannote-audio:说话人追踪的神经构建块:语音激活检测、说话人变化检测、说话人嵌入。

  该部分项目涉及神经风格迁移、图像分类、人脸对齐、语义分割、RoI 计算、图像增强等任务,还有一些特殊的 CNN 架构,例如第 5、6 和 13 个项目,以及一些预训练模型的集合。其中第 4 个项目可以用于将你的定制图像分类模型和当前最佳模型进行对比,快速知道你的项目到底有没有希望,作者戏称该项目为「Project Killer」。

  13.s2cnn:这个库包含一个用于球面信号(例如,全向摄像机、地球信号等)的 SO(3) 等变 CNN 的 PyTorch 实现。

  这一部分包含了很多 PyTorch 教程,它不仅有官方教程与示例,同时还包含很多开发者在学习过程的经验与理解。从难易程度上看,它们首先介绍了如何入门 PyTorch 这一个框架,并使用 MNIST 等简单数据集展示了一般搭建模型的方法,这些都非常适合初学者入门机器学习。其次会有一些练习题及示例脚本,这些资源可以帮助更好地理解机器学习与 PyTorch 框架。最后就是一些具体任务与模型架构的实现,例如基于 ImageNet 实现 Inception_v3 或 ResNet_50 等。

  这里值得注意的是 PyTorch 官方教程,基本上初学者只要跟着官方教程走就行了,它们非常丰富与具体。PyTorch 的教程确实很完美,它不仅从入门基础、计算机视觉、文本处理、生成模型和产品部署等方面全面覆盖了 DL 的使用范围,同时每一个教程不仅解释了模型原理,还注释了大多数的代码。小编感觉相对于 TensorFlow 的教程解释(需要大量查找文档),PyTorch 更加具体。如下展示了 PyTorch 的入门主题:

  19.pytorch-intro:展示如何执行卷积神经网络和循环神经网络的一些脚本。

  因为动态计算图的便利,很多原本使用 TensorFlow 实现的论文都有 PyTorch 复现版,例如下面的高速公路网络和多人实时姿态估计(CVPR17)等。而更多的是本来就由 PyTorch 实现的论文,包括 DiscoGAN、AnimeGAN 和 TCN 等。这一部分收录了 273 篇论文实现,但是限于长度,我们只展示了前 20 个项目,读者可查阅原项目了解更多。

  13.pix2pix-pytorch:使用条件对抗网络实现图像到图像的转换。

  这一部分主要介绍了 PyTorch 其它各种资源,包括教程论文列表、个人的学习经验与实践、好用的 PyTorch 插件等。这一部分相对于其它部分比较散,但是有一些项目还是非常有意思的,例如在 PyTorch 项目模板中,其介绍了构建 PyTorch 项目一般所采用的结构,包括文件夹及文件结构、各文件的编写规范和示例等。这个项目一直在更新,下图展示了构建 PyTorch 项目的一般文件结构:



相关阅读:澳门金沙网上娱乐